If $\alpha $ and $\beta  - $ particles are moving with equal velocity perpendicular to the flux density $B$, then the radii of their paths will be

  • A

    unequal and in the opposite direction

  • B

    equal and in the opposite direction

  • C

    unequal and in the same direction

  • D

    equal and in the same direction

Similar Questions

A proton, a deuteron and an $\alpha$ particle are moving with same momentum in a uniform magnetic field. The ratio of magnetic forces acting on them is.......... and their speed is.................. in the ratio.

  • [JEE MAIN 2021]

In a certain region static electric and magnetic fields exist. The magnetic field is given by $\vec B = {B_0}\left( {\hat i + 2\hat j - 4\hat k} \right)$. If a test charge moving with a velocity $\vec v = {v_0}\left( {3\hat i - \hat j + 2\hat k} \right)$ experiences no force in that region, then the electric field in the region, in $SI\, units$, is

  • [JEE MAIN 2017]

A proton of energy $200\, MeV$ enters the magnetic field of $5\, T$. If direction of field is from south to north and motion is upward, the force acting on it will be

The magnetic force acting on a charged particle of charge $-2\, \mu  C$ in a magnetic field of $2\, T$ acting in $y$ direction, when the particle velocity is $(2i + 3 j) \times  10^6\,\, m/s$ is

  • [AIPMT 2009]

Consider the motion of a positive point charge in a region where there are simultaneous uniform electric and magnetic fields $\vec{E}=E_0 \hat{j}$ and $\vec{B}=B_0 \hat{j}$. At time $t=0$, this charge has velocity $\nabla$ in the $x$-y plane, making an angle $\theta$ with $x$-axis. Which of the following option$(s)$ is(are) correct for time $t>0$ ?

$(A)$ If $\theta=0^{\circ}$, the charge moves in a circular path in the $x-z$ plane.

$(B)$ If $\theta=0^{\circ}$, the charge undergoes helical motion with constant pitch along the $y$-axis.

$(C)$ If $\theta=10^{\circ}$, the charge undergoes helical motion with its pitch increasing with time, along the $y$-axis.

$(D)$ If $\theta=90^{\circ}$, the charge undergoes linear but accelerated motion along the $y$-axis.

  • [IIT 2012]